

Fred Moore President Horison Information Strategies Horison.com

Large-scale Storage

Tape and Archives For the Zettabyte Era

2016 eta

1 ZB = 1,000 EBs = 1x10²¹ bytes

The Zettabyte Era Takes Off

One Zettabyte Equivalents

Zettabyte era

One sextillion

Watching the entire Netflix catalog 3 million times

Enough to record a video call that's more than 237,000,000 years long

A stack of books from Earth to Pluto 20 times (72 billion miles)

55.36 million LTO-9 (18 TB) cartridges, 50 million 20 TB HDDs, 250 billion DVDs

~2043 eta

Yottabyte era

One septillion

125 million years of 1 hour TV shows, 10 billion 4k movies, ~ 7.5 trillion MP3 songs

66.7 years of the Large Hadron **Collider's experimental data**

~5B internet users, 3.9 ZBs of global IP traffic generated, 82% from video in 2022

Digital Transformation Fuels Secondary Storage

Archival Data Pileup Could Exceed 9.0 ZB by 2025

By 2025..

Up to 11.7 ZB Stored

~80% (~9.3 ZB) of all Data is Archival!

The Archive Copy is Usually the <u>Only</u> Copy of Data

27.1 B IoT Devices

Deeper Archives Retention Periods Over 100 Years are Common

-AI, ML, Deep Learning Harvest Archives

Active Archive Becomes a De-facto Standard

Expect a New Sustainable T Archive Tier/Technology Or VMF Cybercrime Damage to Reach \$10.5 T by 2025.

Cybersecurity Ventures

Software Defined "Everything"

338 Billion Lines of <u>New Software</u> 30 Million Software Developers

Source: Horison, Inc.

Active Archive – Provides Fast Access to Archives

Backup	Archive	Active Archive
Copies data for protection and fast recovery (RTO), source data left in place, potential for redundant data, often stored as blocks	Moves infrequently used data to more cost-effective storage, frees space on source devices	A <u>combined</u> solution of intelligent software, SSD, HDD, and tape library systems
<u>Restores</u> files to desired point in time in event of data loss Backup is important – recovery is everything!	Retrieves files for future reference and analysis Archive copy is usually the only copy	Provides fast file and object level access to higher activity (dynamic) archival data
Short retention duration ~1-120 days Cyclic process, overwrites itself at end of retention time	Periodic process, forever growing, seldom overwritten - WORM, encryption, air gap	AI, ML and Big Data analytics increase archive activity – for blocks, files and objects

Digital Data Lifecycle When Does Data Become Archival?

Probability of access P(a) declines as data ages

The value of data can vary over time

Data typically becomes archival in ~90-120 days

Archival data piling up faster than it is analyzed

Seldom Backed Up (1 copy)

Archival retention can be >100 years to ∞

Source: Horison, Inc.

Source: Horison, Inc.

After 2025 a New Secondary Storage Architecture Begins to Emerge

Distinct Tiers Target the Archival Avalanche

Inside the

Archives

<u>By 2025</u>

- ~11.7 ZB total data stored
- >60% stored in HSDCs
- ~20% of stored data is active
- ~80% (~9.3 ZB) of stored data is cold/archival

Immutable Data Properties <u>Archival Data is Mostly Write Once*</u> WORM – Write Once, Read Many WORSE -- Write Once, Read Seldom WORN – Write Once, Read Never WORF -- Write Once, Read Forever **Can't be deleted, modified or overwritten*

Optimal Long-term Solution Nearline HDD - Active Archive Flash SSD – Instant Archive TBD - Optimized Active Archive

Tape Library (PB, EB...)

Tape, Photonics, DNA, Glass, 3-D Holographic, TBD....?

Sustainability and TCO Comparison for Secondary Storage Heavily Favors Tape Over Disk for Archives

Ten-year TCO and CO₂ Reduction for 10 PB Growing at 35% Annually

From Here to Where...?

Current Technology	Recording Technique	Roadmap Capability	Future Developments	Challenges
NVM (SRAM, DRAM, MRAM, NAND Flash, PCM, 3D-Xpoint)	Electronic Charge	Aggressive development, multiple technologies emerging, CXL, NVMe(oF)	Multi-layer 3D stacking (500 ⁺), faster garbage collection, new tiers?	Price
HDD	Magnetic Field 0 0 1 0 1 0 1	Performance limited and capacity growth slowing	HAMR, MAMR, (? Tb/in ²), multi-platters (9-11), zones, 2-4 actuators, bit patterned, ordered granular, cold HDD	Access density (IOPs), TCO, high energy consumption, \$/TB/watt, CO ₂
Таре	Magnetic Field Metal Particle vs. Barium Ferrite Strontium Ferrite Magnetic Magnetic Bar Brebaltic Strebaltic Strebaltic Bar Partice Strebaltic	Well defined and sustainable capacity growth, 580 TB demo, high patent activity	Strontium Ferrite (SrFe), Epsilon Ferrite (ε-Fe2O3), TMR, deep archive, RAIL, erasure coding, Geo- spreading, fixed tape	Access time, No consumer market The race to \$0/TB
Optical Disc	Reflective Spot	Slow progress compared to magnetics, <u>Not</u> presently a data center technology	Photonic (fluorescent) multi- layer recording has most potential for optics, EMP proof media	Price, performance, capacity, reliability, throughput, slow learning curve

Future Developments for Secondary Storage

Source: Horison Inc.

The Optimal Secondary Storage Strategy Currently Favors Tape

Tape Function	Benefits Summary Tape Re-enters Growth Phase
Price/TCO	Tape Has the Lowest Acquisition Price \$/TB, Lowest TCO.
Energy, CO ₂ Sustainability	Tape Uses Much Less Energy and Has Much Lower Carbon Footprint Than HDDs (~85% Lower).
Performance (Access time)	Much Improved Access Times - Active Archive, Fastest Data Rates, Smarter and Faster Robotics, RAIT, RAIL, New Time to 1 st Byte Features (oRAO, TAOS), Re-writable.
Capacity	LTO-9 Cartridge Capacity @18 TB (45 TB compressed) with 400 MB/sec Data Rate. Smart Zone Exabyte ⁺ Capacity Libraries are Available. Lab Demos Reach 580 TBs per Cartridge.
Scalability	Tape Easily Scales Capacity (PBs to EBs) by Adding Media/Racks <u>Without Adding Energy Consumption</u> , HDDs Scale Capacity by Adding Drives and <u>Adding Energy Consumption</u> .
Portability	Tape Media Easily Portable in Case of Disaster, HDDs More Difficult to Physically Move.
Cybersecurity	Air Gap, WORM and Encryption Options Protect Against Malware Attacks, Provide Immutability.
Durability/Media	LTO Reliability BER (1x10 ²⁰) Surpassed HDDs (1x10 ¹⁶), Media Life >30 Years for all Modern Tape.
Recording Limits	HDDs Facing Areal Density and Performance (IOPs) Limits. Tape Has a Well-Defined Roadmap (pace).
Open Standards	LTO and LTFS Provide Open Standard File Interface, APIs. SW (S3 API) Support for Tape Object Storage.
Tape and Cloud Ecosystem	Tape Interfaces Seamlessly With Clouds Using Industry Standard API's. Native Cloud Applications Can Write To and Read From Tape. Hot and Cold clouds.

Source: Horison Inc. 3/2023

